OpenAMP: "Open Asymmetric Multi-Processing" Project

Runtime coexistence and collaboration Runtime hardware resource assignment Resource sharing and IPC between runtimes Control mechanisms to start and stop runtimes Typical system: Linux + RTOS on one system-on-chip

www.openampproject.org.

OpenAMP Project Intro Standardizing Asymmetric Runtime Integration

OpenAMP

OpenAMP Embedded Targets

Modern Embedded Targets integrate multiple HW resources e.g. multiple core clusters, shared memory and peripherals

OpenAMP Embedded Runtimes

Embedded Targets have multiple Runtimes that need to collaborate

Linux + Apps	RTOS App	Bare Metal App

The HW resources need to be assigned into Runtime Domains

OpenAMP Runtime Control

The Runtimes need to be managed, e.g. loaded into memory and started

OpenAMP Resource Sharing and IPC

The Runtimes need to share data, services, and virtual devices

OpenAMP provides standards, runtime libraries and tooling built on top of existing open source projects to simplify runtime collaboration

OpenAMP Technologies

- <u>Remoteproc</u>
 - A subsystem for loading and controlling coprocessors, used in Linux, U-Boot, and the open-amp library
- <u>RPMsg</u>
 - A simple IPC message system with multiple ports and name server
- <u>Virtio-msg</u>
 - A virtio transport that can be used in AMP systems (and more)
 - Leverage existing virtio protocols and drivers:
 - virtio-net, virtio-blk, virtio-vsock, virtio-console, virtio-fs
 - virtio-i2c, virtio-gpio, virtio-spi
- <u>System Devicetree</u>
 - Extension of Devicetree to express a whole AMP system
 - Used for coordinated configuration and partitioning of the system
 - Lopper: a tool set for System Devicetree
- Other technologies that align with the mission can be added over time

HW Example: AMP SoC

- A single SoC
- CPUs that are SMP Linux capable
- Other CPUs are MCU like, used for
 - Real time or IO offload
 - Safety or Security critical functions
 - Digital Signal Processing
 - Low Power standby w/ IO
- Examples:
 - NXP iMX8M+: 4x A53s + 1 M7 + DSP
 - STM32MP15: 2x A7s + 1 M4
 - TI TDA4VM: 2x A72s + 6x R5s + 3 DSPs
 - ZynqMP: 4x A53s + 2x R5s [+FPGA]

HW Example: AMP via PCIe (and similar)

- x86 host with Arm SoC on a PCIe card
- Two PCIe RC systems connected with a non-transparent bridge
- UCle and Chiplet ecosystem
 - Making these AMP systems more common and more customizable
- Two QEMUs using IVSHMEM
 - Good stand-in for the cases above
 - Approximation of a non-transparent bridge
 - Shared memory, MSI interrupts, and a doorbell MMR on each side

HW Example: Mixed Critical system w/ hypervisor

- Example hypervisor: Xen
- DomOless creation of critical RTOS domains at boot time
 - Real-time
 - Higher level of Functional safety
- Linux based Dom0 boots in parallel
- Other physical CPUs and memory can be used by Dom0 to create non-critical DomUs.

SW Examples

- minimal hypervisor requirements
- Same model can apply to any hypervisor
- Devices, CPUs & memory partitioned w/ System Devicetree using Lopper

Xen Hypervisor

RTOS

Check it out and get involved!

Community Project Website

www.openampproject.org

Member companies:

Thank You